In a presentation delivered at the Second Annual Miami Cancer Institute Precision Oncology Symposium, Rohan Garje, MD, highlighted progress made in precision oncology for metastatic prostate cancer. In a recent interview with our sister site OncLive, Garje who is chief of genitourinary medical oncology at Baptist Health’s Miami Cancer Institute, discussed key takeaways from his presentation, including genomic testing, targeted therapies, and theragnostics.
Garje: Prostate cancer is one of the most common cancers in men, and patients [tend to] do well [with treatment]. A lot of treatments seem to be evolving and new [options] are [being developed]. In the past 5 to 6 years, we have seen a significant improvement in treatment approaches. For the most part, in prostate cancer care, we were relying on hormone therapies. Now, we are moving forward and targeting the genomics of prostate cancer. My talk was focused on the newer genomically-driven therapies, [such as] PARP inhibitors, as well as theragnostics.
Genomic testing in prostate cancer is rapidly evolving. About a decade ago, the use of genomic testing was very limited, and not many people underwent it. Around 2020, when we got PARP inhibitors approved, there was a huge need to do genomic testing, because those markers could be used to select treatments for patients. There are markers [that are indicative of] poorer prognosis that can help in risk stratification of patients to approach them differently.
However, there are several challenges regarding the implementation of genomic testing. Although we know there are biomarker-driven therapies, which are now the standard of care [SOC], their utility in the real world has not been that high. Unfortunately, there’s a lag between [the time] when combination therapies or various genomically-driven therapies are approved [and when we see] their widespread use in the community. The task is to implement them earlier so that our patients can benefit from them.
The unique aspect of prostate cancer is that we can use novel, prostate-specific membrane antigen–targeted imaging technologies. There are several imaging agents that can precisely identify where the cancer is, and we now know that we can also target those areas by using [radioligand] therapies. The most common one is lutetium Lu 177 vipivotide tetraxetan [Pluvicto; formerly 177Lu-PSMA-617], which is very well tolerated for most of our patients and shows meaningful disease control.
In the past year, we have seen all these new treatment modalities. For example, niraparib [Zejula] combined with abiraterone acetate [Zytiga] in the [phase 3] MAGNITUDE study [NCT03748641]. We also saw [the phase 3 TALAPRO-2 study (NCT03395197)] of talazoparib [Talzenna] combined with enzalutamide [Xtandi], and in the [phase 3] PROpel study [NCT03732820], olaparib [Lynparza] was combined with abiraterone. The theme of all 3 studies was similar. They were all [examining] the efficacy of combining PARP inhibitors with androgen-receptor pathway inhibitors [ARPIs] in the first-line mCRPC setting. It is important to identify those patients so that they can benefit [from these approaches]. All the studies met with their primary end point of radiographic progression-free survival. The next important aspect was overall survival [OS]. Based on these analyses, patients who had BRCA1/2 mutations are the ones who benefit the most with these combination therapies regarding OS. Those 3 combinations are now FDA approved.
There are very subtle nuances [between these approvals], so it is very important to be aware of which specific group or homologous recombination repair [HRR] mutations they are approved for. For example, olaparib and abiraterone is approved for patients with BRCA1/2 mutations. Similarly, the niraparib combination is also approved [in this population], but the talazoparib [regimen] has broader approval for patients with HRR [gene] mutations. The adverse effect profile and drug interactions are other aspects that will help [us] pick and choose [between] these options. It’s exciting that there are 3 combination therapies approved, but it’s critical to test for these mutations so that patients can benefit from them.
Currently, lutetium Lu 177 vipivotide tetraxetan (Pluvicto; formerly 177Lu-PSMA-617) is approved in later lines of therapy in metastatic prostate cancer after patients have been treated with ARPIs and chemotherapy. There are 2 different directions the field is [headed in. One is] trying to move this drug into earlier lines prior to chemotherapy. [The phase 3] PSMAfore trial [NCT04689828] looked into this, and it showed significant PFS benefit [with earlier use of the radioligand] when compared with an ARPI switch. At the same time, [the agent] has also been evaluated in the first-line setting in metastatic castration-sensitive prostate cancer. [This includes the] recent PSMAddition trial [NCT04720157,] which has just finished enrollment; we are waiting [to see the] results. These [kinds of] drugs are now moving earlier in the lines.
There are also studies looking at combining [radioligands] with various agents. Lutetium Lu 177 vipivotide tetraxetan has been combined with immunotherapy drugs, PARP inhibitors, chemotherapy, and also radiation therapy to try and enhance efficacy. As we saw in the phase 3 VISION study [NCT03511664], patients benefit from lutetium Lu 177 vipivotide tetraxetan, but the responses are not durable. We’re trying to identify patients who are benefiting [from the agent] and make [responses] more durable by using different combination strategies.
Different types of biomarkers—such as [STK1] and DLL3, which are unique novel biomarkers present in prostate cancer—could also be targeted by using theragnostics. Another interesting aspect is that these biomarkers can also be targeted by using bispecific T-cell engagers and monoclonal antibodies, which can engage the tumor cells with cytotoxic T cells. This can lead to cytokine release and antitumor effects. A couple of studies that were recently published have shown exciting data [with these approaches] in a later-line setting, and where bispecific T-cell engagers are promising. A lot still needs to be done to improve their toxicity profiles, because this [drug class] is associated with cytokine release syndrome. Most elderly patients with prostate cancer may not be able to handle [this treatment], so we must fine tune these agents so that they become more tolerable and easier to administer.
In terms of modalities of action, we are looking not only at the field of radiotheragnostics, where newer agents [such as] Actinium-225, Thorium-229, and Copper-64/65 are being developed. We are also looking at CAR T-cell [therapy] development, which is still in early phases but there is a lot of excitement around it. Bispecifics are rapidly being tested, and then there are also newer modalities called androgen receptor degraders. [We] are trying to evaluate whether patients who are resistant to ARPIs can benefit from agents that can degrade the androgen receptor and improve their outcomes. In the next 5 to 10 years, I think the field will advance rapidly in this direction.
Dr. Choudry and Dr. Durant discuss pathogenic germline variants in GU cancers
August 2nd 2024"We wanted to look at the importance of genetic testing in patients with GU cancer and the impact that it has on their treatment decision-making, and the pathways that we put them on," says Mouneeb Choudry, MD.
Grant to fund research on biomarkers for toxicity from prostate cancer radiation
July 11th 2024“By understanding the mirSNP genetic markers that predispose patients to adverse side effects from cancer therapy we can tailor these therapies to minimize harm and maximize efficacy," says Joanne B. Weidhaas, MD, PhD, MS.